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ABSTRACT

We present a study of the recently discovered intermediate polar 1RXS

J070407+262501, distinctive for its large-amplitude pulsed signal at P = 480 s. Ra-

dial velocities indicate an orbital period of 0.1821(2) d, and the light curves suggest

0.18208(6) d. Time-series photometry shows a precise spin period of 480.6700 s, de-

creasing at a rate of 0.096 ms yr−1, i.e. on a time scale P/Ṗ = 2.5 × 106 yr. The light

curves also appear to show a mysterious signal at P = 0.263 d, which could possibly

signify the presence of a “superhump” in this magnetic cataclysmic variable.

Subject headings: keywords: stars

1. Introduction

IRXS J070407+262501 (hereafter RX0704) is a weak hard X-ray source coinciding with a 16th

magnitude star (USNO 1125.04825852). Gänsicke et al. (2005, hereafter G05) identified this star

with the X-ray source, and described its properties: a high-excitation CV with an orbital period

near 4 hours, and a strong optical pulse with a fundamental period of 480 s (and most of the
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power at 240 s, the first harmonic). This suggests membership among the DQ Hercuilis stars, or

“intermediate polars” as they are also called (for reviews and rosters, see Patterson 1994; Hellier

1996; Mukai 2009). This has now been confirmed by detection of X-rays pulsed with the same

period (Anzolin 2008), which is interpreted as the spin period of an accreting, magnetic white

dwarf.

The very high pulse amplitude caught our eye; we had been looking for a star with a pulsed

signal sufficiently strong that small-telescope observers could track nearly every pulse – and thereby

accumulate a long and detailed observational record of the periodicity. This was partially successful,

although the star is a little faint, and the pulse a little fast, to be tracked in fine detail by small

telescopes. Still, we managed to learn the periods precisely, and to track long-term changes in pulse

period. We report here on the results of that 2006-2010 campaign.

2. Spectroscopy

We obtained spectra, using the 1.3 m McGraw-Hill telescope at MDM Observatory, the Mark

III spectrograph, a 600 line mm−1 grism, and a SITe 1024 × 1024 CCD detector. The spectra

covered 4650-6980 Å with 2.3 Å pixel−1 and a slightly undersampled FWHM resolution of 4 Å over

most of the range. The wavelength scale was established by frequent observation of arc lamps. The

2 arc-second slit produced light losses, so the flux measurements are only approximate.

We obtained a pair of 15 minute exposures on 2006 January 10, and much more extensive

observations during January 18-22. Our observations span a range of 9.4 hours in hour angle,

which suppressed daily cycle count ambiguities in the period determination. Table 1 contains the

log of observations.

Figure 1 shows the mean spectrum. The synthetic magnitude, computed using the passband

from Bessell (1990) is V = 17.3. Strengths of Balmer, He I, and He II emission lines are given in

Table 2. Their equivalent widths are typical of novalike variables, and especially those with strong

X-ray fluxes. The spectrum is fairly similar to that of G05, although our continuum flux level is

nominally ∼ 1 magnitude fainter.

We measured radial velocities of the Hα emission by convolving its profile with the derivative

of a Gaussian, optimized for a line profile of 14 Å FWHM. Schneider & Young (1980) describe the

line-measurement algorithm. The next strongest line, Hβ, also yielded some useable velocities, but

with lower signal-to-noise. To search for periods, we analyzed the Hα velocities with the “residual-

gram” method described by Thorstensen et al. (1996). This yielded an unambiguous cycle count

and a period of 262.2 ± 0.4 min. This is consistent with the less precise period suggested by G05.

The best fit sinusoid of the form v(t) = γ + K sin[2π(t − T0)/P ] has

T0 = HJD 2, 453, 755.8430(29)

P = 0.1821(2) d (1)
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K = 191(12) km s−1

γ = 65(9) km s−1.

Fig. 2 shows this fit superposed on the folded Hα velocities; note that T0 is the time of blue-to-red

crossing.

3. Photometry and Light Curves

We obtained time-series photometry on 43 nights, totaling 250 hours, during 2006-2010. About

one-fifth consists of fast (∼15 s resolution) integrations with CCD cameras on the 1.3 m telescope

of MDM Observatory. The rest is slower (40-80 s) photometry with various 20-35 cm telescopes

in the Center for Backyard Astrophysics network (CBA, Patterson 1998). About half the nights

are quite long, ∼8 hr, and some are very short (∼1 hr, suitable only for a pulse timing). The

brightness generally varied in the range V =16.4-17.2. Brightness changes up to 0.4 mag were

noted on consecutive nights, but we could not detect any pattern in these changes. In this program

of differential photometry, the quality of the nights was mixed: some were photometric, but many

were somewhat cloudy, since we considered this star a good target for cloudy nights (because we

were primarily interested in the timing of its powerful and fast pulse).

On every night and at all times, the star flashed a powerful 240 s wave in the light curve,

of ∼0.3 mag full amplitude (peak-to-trough). This is shown in the upper frame of Fig. 3. The

lower frame shows the power spectrum of one night’s light curve. This indicates a dominant signal

at 359.5 c d−1 (towering off-scale at a power of 1600), an obvious signal at lower frequency, and

many harmonics of the latter. This reveals the signal’s underlying nature: a 480 s periodicity with

a double-hump waveform and other departures from a pure sinusoid. All of this agrees with the

study of G05.

On six occasions we obtained ∼8 hr coverage at high time resolution with the 1.3 m telescope.

On each night, we folded the data on the precise 480 s period; the resultant waveforms were

identical each time. Fig. 4 shows the waveforms for the two best pairs of consecutive nights (clear

throughout), demonstrating how precisely the waveform repeats. Here we have defined zero as

the phase of the broader, deeper minimum – which always precedes the sharper maximum. (This

is different from the more practical phase convention used below.) Although only a few nights

permitted study of these subtle odd-even effects from the synchronous summations, we could carry

out the study for six nights by examining the harmonics. Harmonics carry information about the

waveform, and we found that the phasing of the high harmonics was repeatable from night to night.

This indicates a repeatable waveform, at least on those six nights.
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4. Detailed Period Structure and Orbital Effects

The 2006-7 campaign primarily relied on MDM time series, while in 2009-10 we had mainly

CBA coverage. We analyzed these two campaigns separately.

4.1. The 2009-10 Campaign

In 2009-10 we had only small telescopes available, but obtained 8 consecutive long nights of

coverage from several terrestrial longitudes. This overcame all problems of aliasing. The upper

frame of Figure 5 shows the low-frequency power spectrum, with significant signals flagged with

their frequency in cycles d−1 (±0.015). The 5.479 c d−1 signal is apparently the orbital frequency,

and the 3.805 c d−1 signal is some unknown longer-period wave (discussed in Sec. 7 below). Inset

is the power-spectrum window, which demonstrates that there are no ambiguities from aliasing.

The middle frame shows the waveforms of these two signals, with an arbitrary zero-point (see

caption). The bottom frame shows other segments of the 8-night power spectrum. Note that

the immediate vicinities of the two strong signals at ωspin and 2ωspin show the same picket-fence

pattern as the spectral window in the upper frame. This indicates no significant aliasing, and no

systematic amplitude or frequency modulation. There is a small but significant peak red-shifted

by 5.477± 0.015 c d−1 from ωspin. This is apparently the ωspin −ωorb feature, a common syndrome

in DQ Her stars, probably arising from the reprocessing of pulsed flux in structures fixed in the

orbital frame (analogous to the sidereal/synodic lunar month).

4.2. The 2006-7 Campaign

In 2006-7 most of the coverage was with the MDM telescope, and consisted of two 9-night

clusters with a total span of 48 nights, Each cluster was somewhat sparse due to intervening bad

weather, and there was no data from distant longitudes. The result was data of high signal- to-

noise and good definition of the periodic signals – but fairly poor rejection of aliases. This nicely

complemented the strengths of the 2009-10 campaign.

The light curves and power spectra were very similar to those of 2009-10. In addition to the

obvious powerful signals, a signal was sometimes manifest near 5-6 c d−1, and the lower orbital

sideband of the spin frequency near 174.25 c d−1. The latter provided some additional and accurate

measures of ωorb (assuming that the observed sideband of the spin frequency is always separated

by exactly ωorb). These are listed in Table 3. The overall result is ωorb = 5.492(2) c d−1, or

Porb = 0.18208(6) d.

This orbital period, mainly based on a 48-night baseline, is not quite accurate enough to

establish a unique cycle count during the 3-year gap between campaigns. However, one consecutive-

night pair in 2008-9 yielded a probable detection of the orbital signal. With a likely orbital maximum
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light at HJD 2454850.619, only one alias is permitted, and the (probable) orbital ephemeris becomes

Orbital maximum = 2454061.966(6) + 0.182052(3)E.

The upper frame of Fig. 6 shows a 9-hour light curve, from which the fast periodic wave

(including harmonics) has been removed 1. A possible 5-6 hour wave is present, although the 2006-

7 sampling was too sparse to permit a reliable parsing into distinct periodic components at low

frequency.

Superior signal-to-noise and time resolution in 2006-7 permitted closer study of the fast signals.

Two consecutive nights with 8-hour light curves gave the best determination. The lower frame

of Figure 6 shows the power spectrum after removal of the 480 s signal and all its harmonics.

Significant signals are marked with their frequency in cycles d−1 (±0.08), and each is a harmonic

of 174.27 ± 0.06 c d−1. The inset frame shows the mean light curve at this frequency, which is

ωspin − ωorb.

5. Pulse Ephemeris and Long-Term Period Change

Our campaign also had coverage distributed over each observing season, and hence is well

suited for the study of long-term timing effects, since an exact cycle count can be associated with

each pulse. Table 3 contains the period derived for each observing season, along with the estimate

of G05 for the earlier 2004-5 season. Basically, each season is consistent with P = 480.6700(2) s,

except for the first season, which is puzzling (see also the O − C analysis below).

This period is easily accurate enough to count cycles from one year to the next, and in Table

4 we list the times of maximum light derived for each night. Since the vast majority of the power

occurs at the 240 s first harmonic, we fit each light curve with that period, and extract the time of

maximum light. (Although we have cited evidence above that the odd-even asymmetry is persistent,

it is only provable on the best nights, so a safer procedure is to use the powerful first harmonic.)

Figure 7 shows an O − C diagram of these timings relative to a test period of 240.335031 s.

The 48 points are fit by a simple parabola with an RMS residual of 0.03 cycles (= 8 s), within

measurement error. The best fit corresponds to

HJD pulse maximum = 2454779.89661(3) + 0.0027816553(4)E − 4.2(3) × 10−15E2. (2)

Also shown, near E = −5 × 105, are the three timings published by G05, with cycle counts E

assigned to most closely match our ephemeris. These are hard to understand in view of the orderly

behavior during 2006-2010. Because of the very large scatter and odd period (see Table 4), we

1Without this removal, slow variations are difficult to see – masked by the enormous strength of the pulsed signal.
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exclude these points in the fit. The parabolic term corresponds to dP/dt = −0.095 ms yr−1, or a

period decrease on a timescale P/Ṗ = 2.5 × 106 yr.

It is evident – and fascinating – that the reprocessed signal is dominated by the fundamental,

while the spin signal is obviously dominated by the first harmonic.

6. Comparison with X-rays

With a long-term spin ephemeris, we can compare the optical and X-ray pulsed signals. The

X-ray waveform is complex, but distinguished by a fairly sharp dip in soft X-rays, presumably

arising from photoelectric absorption in the accretion column. Anzolin (2008) report two epochs

for the absorption dip in 2006-7, which are separated, according to our ephemeris, by 30635.01

cycles (of the 480 s period). So the dip location appears to be stable in phase. During 2006-7, the

ephemeris for the broad minimum shown in Figure 5 is

Broad minimum = HJD 2454108.64254 + 0.005563318E,

which implies that the two X-ray absorption dips (each being an average over ∼50 spin cycles)

occurred at spin phase 0.88 on the convention of Fig. 4. We could probably have concocted some

explanation for simple fractions like 0.50, 0.00, and even 0.75. But 0.88 is just too challenging.

As usual with DQ Her stars, the comparison of optical and X-ray phases – though precise – is

mysterious.

7. The 6.3 Hour Signal

A puzzling feature of the low-frequency power spectrum in Figure 5 is the 3.8 c d−1 (= 6.3

hr) signal. Its amplitude is similar to that of the (obviously real) orbital signal, and the inset

power-spectrum window shows that it is not aliased to the orbital signal. Nor does it occur at any

suspicious frequency – e.g. 1/2/3 c d−1, which can be artifacts of differential extinction. Thus it is

likely to be a real signal which maintained some coherence over the 8-night interval.

Cataclysmic variables are well-equipped to produce signals at ωorb, due to eclipses, presentation

effects of the orbiting secondary, an emitting hot spot, and an absorbing hot spot. But distinct

signals at a nearby frequency are difficult to understand. The only such phenomenon which is

(moderately) understood is the “superhump” - which probably arises from a periodic modulation

of accretion-disk light induced by the secondary’s perturbation at the disk’s 3:1 resonance (e.g.,

Whitehurst & King 1991; Smith et al. 2007). About a hundred stars are known to show superhumps,

and about twenty papers have explored the theory underlying the phenomenon. But no confirmed

superhumpers are known to be magnetic, and no theory has allowed for that possibility. Yet in

the case of RX0704, the rapid X-ray/optical pulse certifies strong magnetism, and disruption of
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the disk by that magnetism (in order to provide a radial plunge to the white-dwarf surface). Is it

possible that such a star can also show superhumps?

Yes, perhaps. Retter et al. (2001, 2003) reported a 6.3 hr photometric signal in the 5.5 hr

binary TV Columbae, which is also a DQ Her star. Retter et al. considered this to be a superhump,

although this has not been widely accepted, because other observations of comparable sensitivity

failed to show the signal (and perhaps because there was no precedent among magnetic CVs).

However, it’s common among confirmed superhumpers that the signal can be somewhat transient –

present and powerful in one long observing campaign, and missing in another. And this detection in

RX0704, another magnetic CV, lends extra credence to the result. The great similarity in periods

– both are 6.3 hr versus Porb = 5.5 h – is noteworthy.

8. Summary

1. From radial velocities and photometry, we establish a precise binary period of 0.18208(5)

d. This period is also manifest as a weak photometric signal, and as the lower orbital sideband

(ωspin−ωorb) of the main pulse frequency, probably indicating a component reprocessed in structures

fixed in the orbital frame.

2. The white dwarf spins with P = 480.6700 s, with most power at the first harmonic, very

likely signifying a two-pole accretor. Oddly, the signal at the lower orbital sideband frequency

(“reprocessed component”) appears to be dominated by the fundamental.

3. The X-ray dip occurs 0.12 cycles before the broader optical minimum.

4. The spin period decreases on a timescale of P/Ṗ = 2.5 × 106 yr.

5. There appears to be a low-frequency photometric signal at P = 6.3 hours. Future observation

should seek to clarify whether this is a common feature of the star. This periodic wave might be

a long-period manifestation of a “superhump”, with the additional novelty that it occurs in a

magnetic cataclysmic variable. Further theoretical exploration of this possibility is very desirable.
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0908363 at Columbia, and grants AST-0307413 and AST-0708810 at Dartmouth), NASA grant

GO11621.03a, and the Mount Cuba Observatory Foundation.
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Table 1. Radial Velocities and Hour Angles

Time a V (Hα) σV V (Hβ) σV HA b

(km s−1) (km s−1) (km s−1) (km s−1) (hh:mm)

53745.9704 −38 40 −108 60 +3:58

53745.9875 −97 42 −45 102 +4:22

53753.8997 180 21 69 72 +2:47

53753.9082 199 23 · · · · · · +3:00

53753.9167 157 22 208 51 +3:12

53753.9253 84 31 143 69 +3:24

53753.9338 74 19 185 41 +3:36

53753.9443 12 32 −1 39 +3:52

53753.9528 −59 30 9 86 +4:04

53753.9613 −30 44 102 43 +4:16

53753.9698 −91 25 75 193 +4:28

53753.9784 −64 36 −36 87 +4:41

53754.7713 175 19 215 144 −0:14

53754.7819 254 25 227 53 +0:01

53754.7904 291 21 · · · · · · +0:13

53754.7990 254 25 · · · · · · +0:26

53754.8075 225 35 289 100 +0:38

53754.8160 126 51 377 137 +0:50

53755.9046 56 64 135 106 +3:02

53755.9131 104 66 182 109 +3:15

53755.9216 −8 57 59 118 +3:27

53755.9408 31 48 −10 210 +3:55

53755.9493 −62 64 41 124 +4:07

53755.9578 −204 82 −20 60 +4:19

53755.9776 −250 47 −48 122 +4:48

53755.9867 −96 99 36 68 +5:01

53756.9172 −54 29 83 49 +3:24

53756.9257 24 22 123 62 +3:37

53756.9342 41 26 56 49 +3:49

53756.9427 43 24 67 74 +4:01

53756.9532 139 20 197 46 +4:16
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Table 1—Continued

Time a V (Hα) σV V (Hβ) σV HA b

(km s−1) (km s−1) (km s−1) (km s−1) (hh:mm)

53756.9617 217 15 311 51 +4:29

53756.9702 270 17 325 73 +4:41

53756.9787 277 24 316 41 +4:53

53756.9872 224 22 248 54 +5:06

53757.5922 −111 30 −32 50 −4:21

53757.6007 −23 42 −143 132 −4:09

53757.6093 −210 36 −256 88 −3:56

53757.6178 −55 33 37 129 −3:44

53757.6263 −130 28 7 79 −3:32

53757.6433 −61 24 48 204 −3:07

53757.6518 −26 29 −39 54 −2:55

53757.6603 29 26 140 69 −2:43

53757.6688 58 24 42 57 −2:30

53757.6773 192 28 129 54 −2:18

53757.6887 242 22 208 78 −2:02

53757.6972 263 19 235 88 −1:49

53757.7058 292 16 353 34 −1:37

aHeliocentric Julian date of mid-integration, minus 2400000. Inte-

grations were 720 and 900 s.

bHour angle at mid-integration.
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Table 2. Spectral Features in Quiescence

E.W.a Flux FWHM b

Feature (Å) (10−16 erg cm−2 s1) (Å)

HeII λ4686 10 55 17

Hβ 12 61 18

HeI λ4921 1 6 17

HeI λ5015 1 5 20

HeII λ5411 3 14 26

HeI λ5876 3 13 18

Hα 26 88 20

HeI λ6678 3 9 24

aEmission equivalent widths are counted as positive.

bFrom Gaussian fits.

Table 3. Accurate Estimates of the Orbital Frequency

Source Frequency

[c d−1]

Radial velocities 5.492(7)

2007a 5.495(14)

2007a (sideband) 5.495(13)

2007b 5.487(12)

2007b (sideband) 5.490(13)

2007a+b 5.494(4)

2007a+b (sideband) 5.492(3)

2010 5.479(20)

2010 (sideband) 5.477(20)

ALL 5.492(2)
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Table 4. Yearly Estimates of the Pulse Period

Season P [s] Reference

2004-5 480.7080(44) G05

2006-7 480.6712(10) this work

2007-8 480.6686(14) this work

2008-9 480.6695(6) this work

2009-10 480.6700(3) this work

Table 5. Times of 240 s Maximum Light

[Heliocentric Julian Days minus 2454000.]

61.85645 63.81754 65.74801 69.82591 70.80234

100.68293 108.64128 109.75666 170.74176 179.75711

447.86435 474.95487 475.93117 779.89672 850.56729

851.56040 903.64976 904.62324 913.64979 1160.87467

1164.70780 1166.66626 1176.68833 1177.67862 1182.66893

1194.74976 1195.85697 1197.87922 1199.71220 1200.71092

1201.30060 1201.78466 1202.74428 1203.30057 1205.58990

1206.69426 1260.58046 1261.58466 1270.38303 1270.67511

1271.64317 1305.61554 1312.62812 1470.85121 1471.84707

1478.90405 1479.90545 1480.95974 1481.83037
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Fig. 1.— Average flux-calibrated spectrum during 2009 January. The accuracy of the vertical scale

is uncertain by at least 20%.
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Fig. 2.— Radial velocities of the Hα emission line, folded on the spectroscopic period, and with

the best-fit sinusoid superposed. For continuity, all data are repeated for a second cycle.
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Fig. 3.— Upper frame: A portion of one night’s light curve, showing the large 240 s pulses. Lower

frame: The power spectrum of the same light curve. Rising far off-scale (to a power of 1600) is the

240 s signal; other features are the 480 s fundamental and many harmonics.
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Fig. 4.— Mean light curve during two pairs of consecutive nights in 2006-7. Zero phase is de-

fined here as the phase of the broader, deeper minimum in the 480 s cycle, and occurs at HJD

2454108.64254.
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Fig. 5.— Eight-night power spectrum in 2009-10. Upper frame: the low-frequency region, with sig-

nificant features flagged with their frequencies in cycles d−1 (±0.015). Inset is the power-spectrum

window of this campaign, which demonstrates that there are no problems with aliasing - and, in

particular, that the peculiar signal at 3.805 c d−1 is not an alias. Middle frame: Light curves folded

at these periods: each of semi-amplitude 0.04 mag. Lowest frame: Region near the strong signals,

showing a significant peak at 174.27 c d−1 (ωspin − ωorb).
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Fig. 6.— Upper frame: A 9-hour light curve after the rapid pulse is removed. Lower frame: The

power spectrum of two consecutive nights after that removal. Each significant peak is labelled with

its frequency (±0.08) in cycles d−1. They are integer multiples of 174.25 ± 0.05, which we identify

as (ωspin − ωorb). Inset is the mean waveform of that sideband signal. It is relatively weak, and is

dominated by the fundamental.
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Fig. 7.— Figure 7. O-C diagram of the pulse maxima, relative to the test ephemeris HJD

2454779.89647 + 0.00278165545 E. The curve corresponds to the fitted parabola, Eq. (2). The

three points near E = −5 × 105 (stars) are those of G05; these are not included in the fit.


